Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38639759

RESUMO

During investigations of invertebrate-associated fungi in Yunnan Province of China, a new species, Sporodiniella sinensis sp. nov., was collected. Morphologically, S. sinensis is similar to Sporodiniella umbellata; however, it is distinguished from S. umbellata by its greater number of sporangiophore branches, longer sporangiophores, larger sporangiospores, and columellae. The novel species exhibits similarities of 91.62 % for internal transcribed spacer (ITS), 98.66-99.10 % for ribosomal small subunit (nrSSU), and 96.36-98.22 % for ribosomal large subunit (nrLSU) sequences, respectively, compared to S. umbellata. Furthermore, phylogenetic analyses based on combined sequences of ITS, nrLSU and nrSSU show that it forms a separate clade in Sporodiniella, and clusters closely with S. umbellata with high statistical support. The phylogenetic and morphological evidence support S. sinensis as a distinct species. Here, it is formally described and illustrated, and compared with other relatives.


Assuntos
Ácidos Graxos , Mucorales , Animais , Filogenia , China , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Invertebrados
2.
MycoKeys ; 103: 1-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495949

RESUMO

Two new termite-pathogenic species, Ophiocordycepsglobiperitheciata and O.longistipes, are described from Yunnan Province, China. Six-locus (ITS, nrSSU, nrLSU, tef-1α, rpb1 and rpb2) phylogenetic analyses in combination with morphological observations were employed to characterize these two species. Phylogenetically, O.globiperitheciata is most closely related to Hirsutellacryptosclerotium and O.communis, whereas O.longistipes shares a sister relationship with O.fusiformis. However, O.globiperitheciata differs from H.cryptosclerotium by parasitizing Blattodea and producing clavate, unbifurcated stromata. Ophiocordycepsglobiperitheciata is distinguished from O.communis by multiple stromata, shorter asci and ascospores. Ophiocordycepslongistipes differs from O.fusiformis in producing larger stromata, perithecia, asci and ascospores, as well as smaller citriform or oval conidia. Morphological descriptions of the two new species and a dichotomous key to the 19 termite-pathogenic Ophiocordyceps species are presented.

3.
IMA Fungus ; 15(1): 2, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336758

RESUMO

Ophiocordyceps sinensis is a famous traditional Chinese medicine adapted to the alpine environment of the Qinghai-Tibet Plateau and adjacent regions. Clarification of the species diversity of Ophiocordyceps sinensis and its relatives could expand the traditional medicinal resources and provide insights into the speciation and adaptation. The study is prompted by the discovery of a new species, O. megala, described here from a biodiversity hotspot in the Hengduan Mountains, China. Combined morphological, ecological, and phylogenetic evidence supports its distinctiveness from O. sinensis, O. xuefengensis, and O. macroacicularis. Additionally, based on the phylogenetic construction of Ophiocordyceps, a special clade was focused phylogenetically on the more closely related O. sinensis complex, which was defined as the O. sinensis- species complex lineage. A total of 10 species were currently confirmed in this lineage. We made a comprehensive comparison of the sexual/asexual morphological structures among this species complex, distinguishing their common and distinctive features. Furthermore, using the method of species distribution modelling, we studied the species ocurrences in relation to climatic, edaphic, and altitudinal variables for the eight species in the O. sinensis-species complex, and determined that their potential distribution could extend from the southeastern Qinghai-Tibet Plateau to the Xuefeng Mountains without isolating barrier. Thus, the biodiversity corridor hypothesis was proposed around the O. sinensis-species complex. Our study highlights the phylogeny, species diversity, and suitable distribution of the O. sinensis-species complex lineage, which should have a positive implication for the resource discovery and adaptive evolution of this unique and valuable group.

4.
Genes (Basel) ; 15(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255000

RESUMO

Phyllosticta yuccae is an important plant pathogen causing leaf spot disease in Yucca gigantea Lem. It is imperative to note that the amount of information available about the mitogenome of this subject is severely limited. This must be addressed immediately, as it is crucial to our understanding and progress in this field. To better understand the mitogenomic characteristics of P. yuccae, we conducted its sequencing by MGISEQ. Afterwards, the mitogenome was assembled and annotated. The mitogenomic characteristics and phylogenetic placement of the P. yuccae strain KUMCC 6213 were analyzed. The study revealed that the mitogenome of P. yuccae is a circular DNA molecule, consisting of 178,540 base pairs. It contains a total of 64 genes, including 14 protein-coding genes (PCGs), 26 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA), and 22 open reading frame genes (ORF), accounting for 80.98% of the total size. Repetitive sequences accounted for 15.42% of the mitogenome. The analysis of codon usage indicated that the codon UUA was the most commonly utilized, whereas the amino acid Leu was the most frequently employed. A comparative analysis of mitogenomes between P. yuccae and Macrophomina phaseolina (Tassi) Goid. showed notable variations in the position and size of gene clusters, with cox1, nad4, and nad4L genes exhibiting relatively low conservation. Phylogenetic analysis based on the 14 PCGs revealed that P. yuccae has the closest genetic relationship with M. phaseolina (Botryosphaeriaceae, Botryosphaeriales). This study first reports the mitogenome of P. yuccae and validates its phylogenetic placement. The findings enhance the knowledge of mitogenomes in Botryosphaeriales, offering novel perspectives on the genetics and evolution of the plant pathogen P. yuccae. This is crucial for the accurate prevention and management of leaf spot disease in Y. gigantea.


Assuntos
Aminoácidos , Ascomicetos , Uso do Códon , Filogenia , Conhecimento
5.
MycoKeys ; 99: 227-250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37828936

RESUMO

Samsoniella is a ubiquitous genus of cosmopolitan arthropod-pathogenic fungi in the family Cordycipitaceae. The fungi have economic, medicinal, and ecological importance. Prior taxonomic studies of these fungi relied predominantly on phylogenetic inferences from five loci, namely, the nuclear ribosomal small and large subunits (nr SSU and nr LSU), the 3' portion of translation elongation factor 1 alpha (3P_TEF), and RNA polymerase II subunits 1 and 2 (RPB1 and RPB2). Despite many new species being described, not all of the recognized species inside this group formed well-supported clades. Thus, the search for new markers appropriate for molecular phylogenetic analysis of Samsoniella remains a challenging problem. In our study, we selected the internal transcribed spacer regions of the rDNA (ITS rDNA) and seven gene regions, namely, 3P_TEF, the 5' portion of translation elongation factor 1 alpha (5P_TEF), RPB1, RPB2, γ-actin (ACT), ß-tubulin (TUB), and a gene encoding a minichromosome maintenance protein (MCM7), as candidate markers for species identification. Genetic divergence comparisons showed that the ITS, RPB2, ACT, and TUB sequences provided little valuable information with which to separate Samsoniella spp. In contrast, sequence data for 3P_TEF, 5P_TEF, RPB1, and MCM7 provided good resolution of Samsoniella species. The phylogenetic tree inferred from combined data (5P_TEF + 3P_TEF + RPB1 + MCM7) showed well-supported clades for Samsoniella and allowed for the delimitation of 26 species in this genus. The other two species (S.formicae and S.lepidopterorum) were not evaluated, as they had abundant missing data.

6.
J Fungi (Basel) ; 9(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367612

RESUMO

The Cordyceps militaris complex, which is a special group in the genus Cordyceps, is rich in species diversity and is widely distributed in nature. Throughout the investigations of arthropod-pathogenic fungi in the national reserves and in Vietnam parks, collections of C. militaris attacking lepidopteran pupae or larvae were located in the soil and on the leaf litter. The phylogenetic analyses of the combined nrSSU, nrLSU, TEF, RPB1, and RPB2 sequence data indicated that the fungal materials collected in Vietnam belonged to C. militaris and two hidden species in the C. militaris complex. The phylogenetic analyses and morphological comparisons presented here strongly supported the descriptions of C. polystromata and C. sapaensis as new taxa as well as C. militaris as a known species. The morphological characteristics of 11 species in the C. militaris complex, which included two novel species and nine known taxa, were also compared.

7.
IMA Fungus ; 14(1): 9, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170179

RESUMO

Some Ophiocordyceps species infecting ants are able to manipulate the host behavior. The hosts are manipulated in order to move to location that are advantageous for fungal spore transmission. Ophiocordyceps species that are able to manipulate the ant's behavior are called "zombie-ant fungi". They are widespread within tropical forests worldwide, with relatively few reports from subtropical monsoon evergreen broad-leaf forest. Zombie-ant fungi have been described and reported in different countries worldwide. However, there were a few reports from China. This study proposed six new species of zombie-ant fungi from China based on multi-gene (SSU, LSU, TEF, RPB1 and RPB2) phylogenetic analyses and morphological characteristics. Six novel species of Ophiocordyceps from China were identified as the Ophiocordyceps unilateralis core clade, forming a separate lineage with other species. Six novel species of Ophiocordyceps with hirsutella-like asexual morphs exclusively infecting ants were presented herein, namely, Ophiocordyceps acroasca, Ophiocordyceps bifertilis, Ophiocordyceps subtiliphialida, Ophiocordyceps basiasca, Ophiocordyceps nuozhaduensis and Ophiocordyceps contiispora. Descriptions and illustrations for six taxon were provided. Five of these species were collected from the subtropical monsoon evergreen broad-leaf forest, and one was collected from the rainforest and subtropical monsoon evergreen broad-leaf forest. This work proposes that the same host of Camponotus can be infected by multiple ant pathogenic fungi, while multiple ants of Polyrhachis can be infected by the same pathogenic fungi at the same time. This study contributes towards a better understanding of the evolutionary relationship between hosts and fungi, and provides novel insights into the morphology, distribution, parasitism, and ecology of Ophiocordyceps unilateralis sensu lato. We have provided a method for obtaining living cultures of Ophiocordyceps unilateralis complex species and their asexual morphs based on the living cultures, which is of significant value for further studies of Ophiocordyceps unilateralis complex species in the future.

8.
Front Microbiol ; 14: 1117753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937310

RESUMO

Introduction: Clonostachys, a genus with rich morphological and ecological diversity in Bionectriaceae, has a wide distribution among diverse habitats. Methods and Results: In the present study, a phylogenetic framework is reconstructed for the family Bionectriaceae focusing on Clonostachys through increased taxon-sampling using the nrLSU sequence. Through surveying Clonostachys in China, Vietnam, and Thailand over the past 3 years, seven Clonostachys spp. were found and identified. Two new species, C. chuyangsinensis and C. kunmingensis, are described and illustrated based on morphological characteristics and molecular data. The phylogenetic positions of the seven species were evaluated based on four genomic loci (ITS, nrLSU, TUB2, and TEF1). Discussion: Moreover, the genetic divergence comparisons of Clonostachys species for three markers (ITS, TUB2, and TEF1) are also provided. The results indicated that the TEF1 sequence data provided the best resolution for distinguishing species of Clonostachys, followed by sequence data for the TUB2 and ITS regions.

9.
Genes (Basel) ; 14(3)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36980982

RESUMO

Ophiocordyceps lanpingensis (O. lanpingensis) belongs to the genus Ophiocordyceps, which is often found in Yunnan Province, China. This species is pharmacologically important for the treatment of renal disorders induced by oxidative stress and an inadequate immune response. In the present study, the mitogenome of O. lanpingensis was determined to be a circular molecule 117,560 bp in length, and to have 31% G + C content and 69% A + T content. This mitogenome comprised 82% of the whole genome that codes for significant genes. The protein-coding regions of the O. lanpingensis mitogenome, containing 24 protein-coding genes, were associated with respiratory chain complexes, such as 3 ATP-synthase complex F0 subunits (atp6, atp8, and atp9), 2 complex IV subunits/cytochrome c oxidases (cox2 and cox3), 1 complex III subunit (cob), 4 electron transport complex I subunits/NADH dehydrogenase complex subunits (nad1, nad4, nad5, and nad6), 2 ribosomal RNAs (rns, rnl), and 11 hypothetical/predicted proteins, i.e., orf609, orf495, orf815, orf47, orf150, orf147, orf292, orf127, orf349, orf452, and orf100. It was noted that all genes were positioned on the same strand. Further, 13 mitochondrial genes with respiratory chain complexes, which presented maximum similarity with other fungal species of Ophiocordyceps, were investigated. O. lanpingensis was compared with previously sequenced species within Ophiocordycepitaceae. Comparative analysis indicated that O. lanpingensis was more closely related to O. sinensis, which is one of the most remarkable and expensive herbs due to its limited availability and the fact that it is difficult to culture. Therefore, O. lanpingensis is an important medicinal resource that can be effectively used for medicinal purposes. More extensive metabolomics research is recommended for O. lanpingensis.


Assuntos
Hypocreales , Filogenia , China , Sequência de Bases , Hypocreales/genética
10.
J Invertebr Pathol ; 192: 107771, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618025

RESUMO

Termites are serious pests in agriculture and forestry, causing significant economic losses to property and the construction industry. However, only a few entomopathogenic fungi attack termites that are dominant members of most terrestrial biomes. This study contributes to the taxonomic knowledge of entomopathogenic fungi with the description of a new pathogen on termites collected from the Pu Luong Nature Reserve in Vietnam. The new termite pathogen, Ophiocordyceps puluongensis, is introduced on the basis of morphological and multigene phylogenetic evidence. Based on the combined dataset of five genes including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1α (tef-1α), and the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), phylogenetic analyses were performed by Maximum Likelihood and Bayesian inference methods to determine the phylogenetic position of O. puluongensis. Three samples of O. puluongensis are clustered in the Hirsutella thompsonii subclade of Hirsutella lineages in Ophiocordyceps, and clustered together with O. asiatica to form a separate clade from other Ophiocordyceps species. Morphologically, O. puluongensis differs from O. asiatica by its smaller and shorter perithecia, asci and ascospores, pink to reddish-orange stipes of stromata, as well as smaller fusiform or citriform conidia. The distinctiveness of this termite pathogen is strongly supported by both molecular phylogeny and morphology. The entomopathogenic fungus O. puluongensis could have the potential to be used as bioinsecticides to control termites.


Assuntos
Hypocreales , Isópteros , Animais , Teorema de Bayes , Hypocreales/genética , Filogenia , Esporos Fúngicos/genética , Vietnã
11.
Database (Oxford) ; 20222022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363307

RESUMO

Fungi are the major decomposers in terrestrial and aquatic ecosystems, playing essential roles in biogeochemical cycles and food webs. The Fungi kingdom encompasses a diverse array of taxa that often form intimate relationships with other organisms, including plants, insects, algae, cyanobacteria and even other fungi. Fungal parasites of insects are known as entomopathogenic fungi and are the causative agents of serious disease and/or mortality of their hosts. Entomopathogens produce distinct metabolic compounds with roles in pathogenicity, virulence and host-parasite interactions. Thus, the potential of discovering new bioactive compounds useful in biocontrol and pharmaceutical industries is high. Given the significance of entomopathogenic fungi, the rapid research advances and the increased interest, it has become necessary to organize all available and incoming data. The website https://invertebratefungi.org/ has been developed to serve this purpose by gathering and updating entomopathogenic genera/species information. Notes of entomopathogenic genera will be provided with emphasis on their taxonomic status. Information on other invertebrates, such as rotifers, will also be included. Descriptions, photographic plates, information on distribution and host (where applicable) along with molecular data and other interesting details will also be provided. The website is easily and freely accessible to users. Instructions concerning the platform architecture and functionality of the website are introduced herein. The platform is currently being expanded and will be continuously updated as part of the effort to enrich knowledge on this group of fungi. Database URL: https://invertebratefungi.org/.


Assuntos
Ecossistema , Invertebrados , Animais , Fungos/genética , Insetos , Internet
12.
MycoKeys ; 92: 109-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761313

RESUMO

Ophiocordyceps species have a wide range of insect hosts, from solitary beetle larva to social insects. However, among the species of Ophiocordyceps, only a few attack cicada nymphs. These species are mainly clustered in the Ophiocordycepssobolifera clade in Ophiocordyceps. A new entomopathogenic fungus parasitic on cicada nymphs, and another fungus parasitic on the larva of Coleoptera, are described in this study. The two new species viz. Ophiocordycepshydrangea and Ophiocordycepsbidoupensis were introduced based on morphology and multigene phylogenetic evidence. The phylogenetic framework of Ophiocordyceps was reconstructed using a multigene (nrSSU, nr LSU, tef-1α, rpb1, and rpb2) dataset. The phylogenetic analyses results showed that O.hydrangea and O.bidoupensis were statistically well-supported in the O.sobolifera clade, forming two separate subclades from other species of Ophiocordyceps. The distinctiveness of these two new species was strongly supported by both molecular phylogeny and morphology.

13.
Curr Med Chem ; 29(1): 152-162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34420502

RESUMO

BACKGROUND: SARS-CoV-2, which emerged in Wuhan, China, is a new global threat that has killed millions of people and continues to do so. This pandemic has not only threatened human life but has also triggered economic downturns across the world. Researchers have made significant strides in discovering molecular insights into SARSCoV- 2 pathogenesis and developing vaccines, but there is still no successful cure for SARS-CoV-2 infected patients. OBJECTIVE: The present study has proposed a drug-repositioning pipeline for the design and discovery of an effective fungal-derived bioactive metabolite as a drug candidate against SARS-CoV-2. METHODS: Fungal derivative "Cordycepin" was selected for this study to investigate the inhibitory properties against RNA-dependent RNA polymerase (RdRp) (PDB ID: 6M71) of SARS-CoV-2. The pharmacological profile, intermolecular interactions, binding energy, and stability of the compound were determined utilizing cheminformatic approaches. Subsequently, molecular dynamic simulation was performed to better understand the binding mechanism of cordycepin to RdRp. RESULTS: The pharmacological data and retrieved molecular dynamics simulations trajectories suggest excellent drug-likeliness and greater structural stability of cordycepin, while the catalytic residues (Asp760, Asp761), as well as other active site residues (Trp617, Asp618, Tyr619, Trp800, Glu811) of RdRp, showed better stability during the overall simulation span. CONCLUSION: Promising results of pharmacological investigation along with molecular simulations revealed that cordycepin exhibited strong inhibitory potential against SARSCoV- 2 polymerase enzyme (RdRp). Hence, cordycepin should be highly recommended to test in a laboratory to confirm its inhibitory potential against the SARS-CoV-2 polymerase enzyme (RdRp).


Assuntos
Antivirais , Desoxiadenosinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2 , Antivirais/farmacologia , COVID-19 , Humanos , Simulação de Acoplamento Molecular , RNA Viral , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
14.
IMA Fungus ; 12(1): 31, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670626

RESUMO

In this study, the complete mitochondrial genome of O. gracilis was sequenced and assembled before being compared with related species. As the second largest mitogenome reported in the family Ophiocordycipitaceae, the mitogenome of O. gracilis (voucher OG201301) is a circular DNA molecule of 134,288 bp that contains numerous introns and longer intergenomic regions. UCA was detected as anticodon in tRNA-Sec of O. gracilis, while comparative mitogenome analysis of nine Ophiocordycipitaceae fungi indicated that the order and contents of PCGs and rRNA genes were considerably conserved and could descend from a common ancestor in Ophiocordycipitaceae. In addition, the expansion of mitochondrial organization, introns, gene length, and order of O. gracilis were determined to be similar to those of O. sinensis, which indicated common mechanisms underlying adaptive evolution in O. gracilis and O. sinensis. Based on the mitochondrial gene dataset (15 PCGs and 2 RNA genes), a close genetic relationship between O. gracilis and O. sinensis was revealed through phylogenetic analysis. This study is the first to investigate the molecular evolution, phylogenetic pattern, and genetic structure characteristics of mitogenome in O. gracilis. Based on the obtained results, the mitogenome of O. gracilis can increase understanding of the genetic diversity and evolution of cordycipitoid fungi.

15.
Mycobiology ; 49(4): 297-307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512076

RESUMO

A cordycipitoid fungus infecting Hepialidae sp. in Nepal was supposed to be identical to Cordyceps liangshanensis, originally described from southwestern China, and thus, transferred to the genus Metacordyceps or Papiliomyces in previous studies. However, our multi-gene (nrSSU-nrLSU-tef-1α-rpb1-rpb2) phylogenetic and morphological studies based on the type specimen and additional collections of C. liangshanensis revealed that the fungus belongs to the genus Ophiocordyceps (Ophiocordycipitaceae). Therefore, a new combination O. liangshanensis was made, and a detailed description of this species was provided.

16.
Life (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34357059

RESUMO

The new entomopathogenic fungus Ophiocordyceps pingbianensis, collected from Southeast China, was described by mitogenomic, morphological, and phylogenetic evidence. The systematic position of O. pingbianensis was determined by phylogenetic analyses based on six nuclear gene (ITS, tef1-α, nrSSU, nrLSU, rpb1 and rpb2) and 14 mitochondrial protein-coding gene (PCGs) (cox1, cox2, cox3, atp6, atp8, atp9, cob, nad1, nad2, nad3, nad4, nad5, nad6 and nad4L) data. Phylogenetic analyses reveal that O. pingbianensis was belonged to the Hirsutella nodulosa clade in the genus Ophiocordyceps of Ophiocordycipiaceae. This fungus exhibits distinctive characteristics which differed from other related Ophiocordyceps species with slender and geminate stromata, monophialidic conidiogenous cells with an inflated awl-shaped base, a twisty and warty phialide neck and a fusiform or oval conidia, as well as being found on a tiger beetle of Coleoptera buried in moss at the cave. The complete mitochondrial genome of O. pingbianensis was a circular DNA molecule 80,359 bp in length, containing 15 PCGs, 24 open reading frames genes (ORFs), 25 transfer RNA genes (tRNAs) and 27 introns. Ophiocordyceps pingbianensis, containing 27 introns, has the second largest mitogenome in Ophiocordycipiaceae and was next to O. sinensis. To our knowledge, this is the first report of the mitogenome from a new entomopathogenic fungus, and thus provides an important foundation for future studies on taxonomy, genetics and evolutionary biology of Ophiocordycipiaceae.

17.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073831

RESUMO

The mycoparasite fungi of Clonostachys have contributed to the biological control of plant fungal disease and nematodes. The Clonostachys fungi strains were isolated from Ophiocordyceps highlandensis, Ophiocordycepsnigrolla and soil, which identified as Clonostachyscompactiuscula, Clonostachysrogersoniana, Clonostachyssolani and Clonostachys sp. To explore the evolutionary relationship between the mentioned species, the mitochondrial genomes of four Clonostachys species were sequenced and assembled. The four mitogenomes consisted of complete circular DNA molecules, with the total sizes ranging from 27,410 bp to 42,075 bp. The GC contents, GC skews and AT skews of the mitogenomes varied considerably. Mitogenomic synteny analysis indicated that these mitogenomes underwent gene rearrangements. Among the 15 protein-coding genes within the mitogenomes, the nad4L gene exhibited the least genetic distance, demonstrating a high degree of conservation. The selection pressure analysis of these 15 PCGs were all below 1, indicating that PCGs were subject to purifying selection. Based on protein-coding gene calculation of the significantly supported topologies, the four Clonostachys species were divided into a group in the phylogenetic tree. The results supplemented the database of mitogenomes in Hypocreales order, which might be a useful research tool to conduct a phylogenetic analysis of Clonostachys. Additionally, the suitable molecular marker was significant to study phylogenetic relationships in the Bionectriaceae family.


Assuntos
Genoma Mitocondrial , Genômica/métodos , Hypocreales/genética , Composição de Bases , Evolução Molecular , Ordem dos Genes , Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Hypocreales/classificação , Hypocreales/citologia , Hypocreales/isolamento & purificação , Filogenia , Sequências Repetitivas de Ácido Nucleico , Sintenia
18.
BMC Microbiol ; 21(1): 178, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116633

RESUMO

BACKGROUND: The genus Ophiocordyceps, which includes Ophiocordyceps sinensis, has been demonstrated to be one of the most valuable medicinal taxa. The low rate of larval infection and slow development that characterize the cultivation of this genus should be urgently addressed. To identify potential bioinoculants that stimulate the growth of Ophiocordyceps, O. highlandensis was selected as a model system, and a total of 72 samples were collected to systematically compare the microbial communities present during fruiting body development. By applying high-throughput 16S and ITS2 amplicon sequencing technology, the bacterial and fungal communities were identified in O. highlandensis and its surrounding soil, and the functional dynamics of the bacteria were explored. RESULTS: The results indicate that the most abundant bacteria across all the samples from O. highlandensis were Proteobacteria, Firmicutes and Bacteroidetes, while members of Ascomycota were detected among the fungi. The pathways enriched in the developmental stages were associated with carbohydrate degradation, nucleotides and pyridoxal biosynthesis, and the TCA cycle. Compared with that in the fungal community, an unexpectedly high taxonomic and functional fluctuation was discovered in the bacterial community during the maturation of O. highlandensis. Furthermore, bipartite network analysis identified four potential supercore OTUs associated with O. highlandensis growth. CONCLUSIONS: All the findings of this study suggest unexpectedly high taxonomic and functional fluctuations in the bacterial community of O. highlandensis during its maturation. O. highlandensis may recruit different endogenous bacteria across its life cycle to enhance growth and support rapid infection. These results may facilitate Ophiocordyceps cultivation and improve the development of strategies for the identification of potential bioinoculant resources.


Assuntos
Bactérias/isolamento & purificação , Carpóforos/crescimento & desenvolvimento , Hypocreales/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , China , DNA Bacteriano/genética , DNA Fúngico/genética , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Microbiota , Micobioma , Solo/química , Microbiologia do Solo
19.
Antonie Van Leeuwenhoek ; 114(4): 465-477, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33638738

RESUMO

Cordyceps militaris is a traditional Chinese medicinal food that is challenging to quality maintaining while mass cultivation. Many studies have found that abundant microbes inhabit Ophiocordyceps sinensis and perform important functions for their host. In this study, our objective was to reveal the microbial communities that inhabit C. militaris and analyze their potential functions. High-throughput sequencing of 16S rRNA and ITS genes was used to compare the diversity and composition of the bacterial and fungal communities associated with naturally occurring C. militaris collected from Yunnan Province, southwestern China. The diversity and richness of the microbial communities and the number of function genes of the bacteria were significantly higher in the habitat soil than in the fruiting body. The sclerotia and stromata samples shared the same microbiota and functions. The main bacterial phyla were Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria, and Ascomycota was the main fungal phylum. The growth-promoting bacteria Herbaspirillum and the plant probiotic Phyllobacterium, which may enhance C. militaris quality and facilitate its cultivation, were detected in the fruiting body samples. Genes related to metabolism were more abundant in the soil bacteria, while membrane transport genes were more abundant in the endophytic bacteria of C. militaris. Our study is the first to reveal the unexpectedly high diversity of the microbial communities and the bacterial functions inhabiting the natural C. militaris using high-throughput sequencing, and our results provide insights into mining the functions of microorganisms in the development and quality of C. militaris.


Assuntos
Cordyceps , Microbiota , China , Cordyceps/genética , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
20.
Mycobiology ; 49(2): 133-141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37970184

RESUMO

A new fungus, Ophiocordyceps alboperitheciata, parasitic on the larva of Noctuidae (Lepidoptera) was identified from a survey of entomopathogenic fungi in Kunming Wild Duck Forest Park, Yunnan Province, China. It can be primarily distinguished from relatives by its longer fertile parts, sterile tips, superficial perithecia, narrower asci, and smaller septa of ascospores. As revealed from phylogenetic analyses inferred from nrSSU, nrLSU, tef-1α, rpb1, and rpb2 sequence data, O. alboperitheciata belongs to the Hirsutella citriformis clade in the genus Ophiocordyceps of Ophiocordycipitaceae, and forms a separated clade from other related species. The uniqueness of the taxon is significantly evidenced by both molecular phylogeny and morphology. Furthermore, the interspecific relationships in the H. citriformis clade are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...